
N88-16401

INTERACTIVE KNOkrLEDGE ACQUISITION TOOLS

Martin J. Dudziak and Jerald L. Feinstein

ICF/Phase Linear Systems, Inc.

9300 Lee Highway

Fairfax VA 22031-1207

(703) 934-3800

Abstract: This paper discusses the problems of designing practical

tools'to aid the knowledge engineer and general applications used

in performing knowledge acquisition tasks. At issue for the

knowledge engineer are several problems and misconceptions of

knowledge engineering and knowledge-based systems development.

The authors propose a strategy for removing some of those

problems, presenting a particular approach we have developed for

one class of knowledge acquisition problem characterized by

situations where acquisition and transformation of domain

expertise are often the bottleneck in systems development. The

focus at ICF/Phase Linear has been upon the processing of text-

based source materials through a software tool designed in-house,

the Knowledge Acquisition Module (KAM). The authors go on to

discuss how the tool and the underlying software engineering

principles can be extended to provide a flexible set of tools that

allow the application specialist to build highly-customized

knowledge-based applications.

Introduction

There are some misconceptions or misrepresentations regarding

what knowledge engineering can or should do. These confusions

result in a failure to make the best use of computer technology

and artificial intelligence-based techniques for building

knowledge-based systems that are reliable and effective for real-

world applications. The knowledge engineering process is

typically characterized as follows:

(i) There is a body of expert knowledge "out there" which is

in the minds of certain experts (or what they have

produced -documents, automated systems, etc.).

(2) This knowledge can be codified or summarized into a

formal representation which can then be used by an

automated system.

(3) The knowledge engineer must "obtain" that body of

knowledge and transform it into the ideal type of

symbolic representation - discovering the ideal

formalism is a goal that must be attained.

(4) The symbolic representation must be implemented into an

expert system where there is a mapping of the symbolic

representation into some form of code.

227



Once built the expert system should perform its assigned

tasks in a manner that is predictably similar to the way

a human expert would carry out those tasks.

A fundamental misconception is that a comprehensive body of

knowledge exists in the first place which can be codified into a

formal representation. There is a tendency to think of knowledge

as objects, facts as being entities that can be bounded and

enclosed within the descriptive framework of a given type of

formalism. There is also a tendency to think of the mapping

problem (expert knowledge into symbolic form) as a task that has a

singular and finite answer. However, putting automated systems

aside and considering for a moment only human exchanges of

information and learning, it is clear that acquisition and

transfer of knowledge is not a linear sequence or an early

codifiable phenomenon. The expert-novice interchange is highly

iterative and interpolative. By this it is meant that the

exchanges are more like conversations rather than data transfers

as we normally think of them. [I] As with conversations, the

implied background knowledge of both persons in the exchange

becomes highly significant for the correct interpretation of what

is spoken by both (all) participants.

There must be a high level of dialogue, particularly

interrogation in both directions between expert and novice. This

"handshaking", as it were, is what enables both participants to

know that the other is understanding what is being communicated.

Such questioning enables the novice to make clear what is
understood and what is unclear and what is his or her context of

understanding; it also empowers the expert with knowledge about

the communication process so that he can emphasize or clarify

certain facts, rules, and relationships. In a knowledge

acquisition activity, particularly between engineer and expert,

frequent questioning and clarification is the key to making sure

that both are "speaking the same language." Of course, this often.

leads to a increased volume of written and verbal material to be

analyzed and deciphered; thus the need for automating parts of

those processes.

The knowledge engineer acts as both the go-between for an

expert and an automated system and also as the designer of that

computer-based product and must recognize this dual nature to this

work. The knowledge engineer must take the lead in focusing the

knowledge acquisition process so that it serves to not only

provide substantive expressions of the expert's knowledge but

information that will help in designing the most appropriate

system structures for using that knowledge in the automated

application. The knowledge engineer is responsible in a way

unlike the typical apprentice to the expert in that what is

relevant or useable information must be defined. Also the system

design must be modified in response to new expert information that

is gained through the interviews, dialogues and other acquisition

activities.

228



It is critical to keep the knowledge engineer active at every

level of the acquisition process, from interfacing with the

experts to formulating a computer-based representation for what

was obtained. This provides the broad-context element of control

which can take into account not only the expert source material

currently being processed (e.g., codified) but also the knowledge

which may not be coded into any automated system and which may not

at the moment seem directly relevant but which can become relevant

in the future. But if the knowledge engineer is to be actively

involved in the entire acquisition-representation process, the

tools that will help carry the load and to perform those tasks in

a reasonable period of time must be available.

In brief, the knowledge engineer needs tools that can

expedite these tasks but not perform them without active

participation and control. These tools must enhance productivity

and correctness without adding to the work load, rather than tools

which replace entire segments of the knowledge acquisition

process. If the knowledge engineer is taken out of the loop, so

to speak, then the opportunity to bring in the broad-context of

both acquired or implicit expert knowledge as well as general

common-sense knowledge is reduced. Moreover, the task of

identifying situations where a highly-automated module has

generated something in need of correction or has omitted

something, and the task of making those corrections or

modifications "after the fact", may be so time-consuming and

tedious that the value of the initial automation process is

negated.

One insufficiently-addressed aspect of the knowledge

engineering process which can be significantly improved and which

has been the focus of ICF/Phase Linear automation efforts concerns

the extraction of information imbedded in free-format source

materials (e.g., texts, transcripts) and the transformation of

such knowledge into useable formal representations. The lauter

may be in the syntax of the knowledge engineer's application

system under development or in some intermediate form which the

knowledge engineer may have adopted. There are problems not only

in transforming loosely-formed knowledge into a codified symbolic

representation but also in handling voluminous and diverse-format

database records, text, interview transcripts, and other

digitizable material. The problems in acquiring the knowledge

properly also affect the selection and formalization of a

sufficiently robust representational scheme to be used in the

actual expert system, planner, scheduler or other application.

The knowledge engineer needs to have fluent and easy access to the

breadth and depth of relevant source material to effectively

design data structures that will store facts, rules, relations and

to design or select the reasoning mechanisms that will manipulate

the knowledge bases.

In its project management and consulting work, ICF/Phase

Linear staff have frequently found situations where the volume of

interview transcripts, background texts, and reference materials,
229



particularly manuals and project specification documents, posed
the major roadblock to establishing even an elementary knowledge
base for an application. This has been particularly true for such
engineering applications as autonomousunderwater and aerospace
vehicle control, mission planning, fault diagnosis and
maintenance. The approach ICF/Phase Linear has been developing
consists of building relatively simple software tools which to
reduce the amount of material which the engineer must handle. Such
tools also help to create intermediary data structures that can be
directly applied toward the next phases of the knowledge
engineering process such as incorporation into relations, facts,
and rules in a knowledge base. The goal has been to allow the
knowledge engineer to movequickly through large and difficult
masses of data and to provide the ability to create new data
structures that are more condensed, focused and easily managed,
primarily through rapid browsing and editing. The result is that
the engineer can be more involved in the full knowledge
acquisition process without being overwhelmedby time-consuming
operations.

MODIFY

EXTRACTION
RULES

SOURCE
TEXT

I

L'PARAGRAPH

UNITS

CREATE

p CLUSTERS

t I

TEXT

FORMS

DISPLAY/

BROWSE

12 " I -l" S,;EEXTRACT

PATTERNS I TO
, I • FILE

II qSYMBOLIC /_//

I EXPRESSIONS |
\ , I •

CBROWSE KBASE 5YS

EXTRACTS STRUCTURES

KAM FUNCTIONAL STRUCTURE

KAM or the Knowledge Acquisition Module has been implemented

as the kernel tool in a family of such expediter tools. As such,

it is a concrete example of how some of the strategies outlined

above can be feasibly implemented in a low-cost software package

running on low-cost general-purpose hardware such as the PC family

of microcomputers. The figure above illustrates the basic KAM

functional structure.

In its first phase KAM has been built to handle source files

of text data but it can be extended to work with non-text data as

230



well. Most applications for this type of program will involve

text but in a variety of different formats besides standard

paragraph-oriented text files. The primary features KAM provides

are:

The ability to rapidly form and browse through clusters

or subsets of text arranged according to topics (the

latter being specified using strings and keywords but

also logical relationships between words, presence of

synonyms and morphemes).

The ability to extract elements of text on the

sentential level which match pattern templates (rules

that are defaults or established by the user) and to

browse through these extracted patterns.

The reconstruction of extracted text elements into both

simple English-like and code-like user-specified

representational forms which can be used directly or

after editing in application systems.

The ability to browse quickly among extracts and source
text and to make edits to extracts which are

automatically reflected in the other representational

forms of the extracts.

The ability to work with multiple source files and

extract data sets and to combine data produce from

different sources.

The ability to automatically generate data structures

from extracts according to pre-specified syntax rules

such that the output data sets can be input into the

knowledge bases of various existing applications.

KAM is currently implemented in LISP on a PC/AT. It has been

developed as a prototype following an initial proof-of-concept

version built on a Symbolics workstation, and further extensions

and refinements of the system will be oriented toward

deliverability on a variety of hardware besides the PC/AT.

While KAM is designed to be used in a standalone capacity for

extracting and transforming text, it can also be incorporated,

modular-fashion, into a more comprehensive workstation environment

that provides the user with the capability of defining and using

ad hoc "knowledge-object" definitions - software structures which

specify different classes and types of data that the user may

discover a need to use during the knowledge acquisition life

cycle. An example of such a definition is one called a TopicDef;

it is a frame-like structure that specifies the different rules

and functions to be employed by KAM and related applications for

determining whether or not a given piece of text should be

considered as bearing reference to a topic or not. The TopicDef

instructs KAM as to how the user conceives of the topic and how
231



the system should proceed in its examination of texts in order to
judge its relevance or not.

Only brief mention has been made of the fact that there is a
broad class of straightforward software tools for the knowledge
acquisition process and that like KAM, they can be developed into
standalone units or integrated to form a workstation environment.
Such an environment is the application user's equivalent of a
programmer's development environment as is found on a variety of
machines, the most obvious perhaps being UNIX on conventional
hardware and the Symbolics LISP machines. By providing more
fluidity and convenience at the workstation, the knowledge
engineer can address the acquisition problem and increase
productivity in much the same fashion as the AI programmer can
more effectively grapple with program design and prototyping
issues through well-established features like incremental
compilation, run-time debugging and editor-level evaluations. The
behaviors of programming and knowledge acquisition are not that
dissimilar. It seemsappropriate to expand the tools which have
proven successful in the programming arena toward time-consuming,
productivity-draining problems in critical application areas like
knowledge acquisition.

[i] A source for muchof the theoretical foundation for concepts
expressed in this paper is: Winograd, T. & Flores, F.,
"Understanding Computers and Cognition", Addison-Wesley, Reading
MA, 1987

232




